mindblowingscience:

Scientists Have Cloned Embryos From Adult Cells For the First Time Ever

Ever since Dolly the sheep was cloned eighteen years ago, scientists have been trying and failing to use that same technique to create cloned human embryos from adult cells. Now, they’ve finally succeeded, in what could a major step toward personalized organ transplants and other therapies that rely on a pool of stem cells.

Last year, a different team of scientists reported a breakthrough in creating the first cloned human embryos ever. That team used cells taken from a fetus and an eight-month-old infant. This new result, published in the journal Cell Stem Cell, tweaks the procedure to make it also work with skin cells from two adult men, ages 35 and 75.

Confirming that human clone embryos can indeed be made with adult cells means we could potentially someday scrape off a bit of your skin, put it in a cloned embryo, and extract stem cells personalized with your DNA. Those stem cells can then theoretically be programmed grow into any type of tissue—including an organ for transplant.

The basic process is the same as the one used to clone Dolly. The nucleus, which contains DNA, is sucked out of the adult cell and carefully placed in a donor egg, whose own nucleus has been removed. Scientists have gotten this process to work in over 20 different species, but humans, until recently, have proven tricky.

This result does not mean that cloned babies will be born anytime soon, however. The resulting embryo was missing some types of cells and would not have been able to implant in the womb. The difficulty of getting embryos to grow in the womb is, in fact, why partly scientists still haven’t been able to clone monkeys.

The most promising use of this human cloning technique is in creating embryos as a source of personalized stem cells. Currently, we get stem cells from embryos leftover from in vitro fertilization (IVF)—or we reprogram them from adult cells. Both techniques have their drawbacks, however, as IVF stem cells do not perfectly match the patient’s, and the reprogramming may not ever be entirely complete in adult cells, according to some studies.

Any therapies that may result from cloning adult cells is still far, far off on the horizon. Even with this basic lab research, plenty of questions about the moral implications of human cloning remain. It’s been 18 years since Dolly—but the ethical dilemmas haven’t changed a bit. [Cell Stem Cell via Wall Street JournalTIME]

Top image: Artist rendering of the nuclear transfer technique for cloning. Giovanni Cancemi/Shutterstock

astrodidact:

mucholderthen:

Found! First Earth-Size Planet That Could Potentially Support LifeAstronomers have discovered a planet about the size of Earth, orbiting its star in the zone where oceans of liquid water would be possible.
From Space.com

A study of the newly-found planet indicates it could have an Earth-like atmosphere and water at its surface. The planet Kepler-186f is the fifth planet of the star Kepler-186, 490 light-years away.
The planet has 1.11 times the Earth’s mass. Its radius is 1.1 times that of Earth. Kepler-186f orbits at 32.5 million miles (52.4 million kilometers) from its parent star. Its year is 130 Earth days. 
The planet orbits Kepler-186, an M-type dwarf star less than half as massive as the sun. Because the star is cooler than the sun, the planet receives solar energy less intense than that received by Mars in our solar system, despite the fact that Kepler-186f orbits much closer to its star.


I can’t put into words how much I love infographics. 
ZoomInfo
astrodidact:

mucholderthen:

Found! First Earth-Size Planet That Could Potentially Support LifeAstronomers have discovered a planet about the size of Earth, orbiting its star in the zone where oceans of liquid water would be possible.
From Space.com

A study of the newly-found planet indicates it could have an Earth-like atmosphere and water at its surface. The planet Kepler-186f is the fifth planet of the star Kepler-186, 490 light-years away.
The planet has 1.11 times the Earth’s mass. Its radius is 1.1 times that of Earth. Kepler-186f orbits at 32.5 million miles (52.4 million kilometers) from its parent star. Its year is 130 Earth days. 
The planet orbits Kepler-186, an M-type dwarf star less than half as massive as the sun. Because the star is cooler than the sun, the planet receives solar energy less intense than that received by Mars in our solar system, despite the fact that Kepler-186f orbits much closer to its star.


I can’t put into words how much I love infographics. 
ZoomInfo

astrodidact:

mucholderthen:

Found! First Earth-Size Planet That Could Potentially Support Life
Astronomers have discovered a planet about the size of Earth,
orbiting its star in the zone where oceans of liquid water would be possible.

From Space.com

A study of the newly-found planet indicates it could have an Earth-like atmosphere and water at its surface. The planet Kepler-186f is the fifth planet of the star Kepler-186, 490 light-years away.

The planet has 1.11 times the Earth’s mass. Its radius is 1.1 times that of Earth. Kepler-186f orbits at 32.5 million miles (52.4 million kilometers) from its parent star. Its year is 130 Earth days. 

The planet orbits Kepler-186, an M-type dwarf star less than half as massive as the sun. Because the star is cooler than the sun, the planet receives solar energy less intense than that received by Mars in our solar system, despite the fact that Kepler-186f orbits much closer to its star.

I can’t put into words how much I love infographics. 

abcstarstuff:

SATURN’S HEXAGON: AN AMAZING PHENOMENON

** Synopsis: Researchers at the Planetary Sciences Group of the UPV/EHU-University of the Basque Country reveal some of the secrets of Saturn’s mysterious hexagonal wave, including its rotation period, which could be that of the planet itself. The study illustrates the front cover of the journal Geophysical Research Letters. **

An unusual structure with a hexagonal shape surrounding Saturn’s north pole was spotted on the planet for the first time thirty years ago. Nothing similar with such a regular geometry had ever been seen on any planet in the solar system. The Planetary Sciences Group has now been able to study and measure the phenomenon and, among other achievements, establish its rotation period. What is more, this period could be the same as that of the planet itself. Saturn is the only planet in the solar system whose rotation time remains unknown. The research illustrates the front cover of the journal Geophysical Research Letters and has been highlighted by the publication’s editor.

In 1980 and 1981 NASA’s Voyager 1 and 2 space probes passed for the first time over the planet Saturn, located 1,500 million km from the Sun. Among their numerous discoveries they observed a strange, hexagon-shaped structure in the planet’s uppermost clouds surrounding its north pole. The hexagon remained virtually static, without moving, vis-à-vis the planet’s overall rotation that was not accurately known. What is more, the images captured by the Voyager probes found that the clouds were moving rapidly inside the hexagon in an enclosed jet stream and were being dragged by winds travelling at over 400 km/h.

Thirty years later — the equivalent of one Saturn year, in other words, the time the planet takes to go all the way around the Sun — and over more than six consecutive years, researchers in the UPV/EHU’s Planetary Sciences Group, in collaboration with astronomers from various countries, were able to observe Saturn’s northern polar region in detail once again and confirmed that the hexagon continued in place. After measuring the positions of the hexagon vertices with great precision, they determined that its movement remains extremely stable, and on the basis of the cloud movements, that the jet stream inside it remains unchanged. For this study the researchers used images taken from the Earth between 2008 and 2014; they used, among others, the astronomical cameras PlanetCam (developed by the Planetary Sciences Group itself) and Astralux, fitted to the telescopes of the Calar Alto Observatory in Almería (Spain); in addition, they used the very high resolution images obtained by the Cassini spacecraft, which has been orbiting Saturn since 2004.

Due to the tilt of approximately 27° of the planet Saturn, its polar atmosphere undergoes intense seasonable variations with long polar nights lasting over seven years, followed by a long period of 23 years of variable illumination. However, the seasonal variations do not affect the hexagon and its jet stream at all, so both are part of an extensive wave, deeply rooted in Saturn’s atmosphere. The UPV/EHU researchers suggest that the hexagon and its stream are the manifestation of a “Rossby wave” similar to those that form in the mid-latitudes of the Earth. On our planet the jet stream meanders from west to east and brings, associated with it, the system of areas of low pressure and anticyclones which we have been seeing regularly on weather maps.

On Saturn, a hydrogen gas planet, ten times the size of the Earth, cold in its upper clouds, without a solid surface, and with an atmosphere as deep as that of an ocean, “the hexagonal wavy motion of the jet stream is expected to be propagated vertically and reveal to us aspects of the planet’s hidden atmosphere,” pointed out Agustín Sánchez-Lavega, Head of the Planetary Sciences research group. “The movement of the hexagon could therefore be linked to the depths of Saturn, and the rotation period of this structure, which, as we have been able to ascertain, is 10 hours, 39 minutes and 23 seconds, could be that of the planet itself,” he added. Saturn is the only planet in the solar system whose rotation period is not yet known.
ZoomInfo
abcstarstuff:

SATURN’S HEXAGON: AN AMAZING PHENOMENON

** Synopsis: Researchers at the Planetary Sciences Group of the UPV/EHU-University of the Basque Country reveal some of the secrets of Saturn’s mysterious hexagonal wave, including its rotation period, which could be that of the planet itself. The study illustrates the front cover of the journal Geophysical Research Letters. **

An unusual structure with a hexagonal shape surrounding Saturn’s north pole was spotted on the planet for the first time thirty years ago. Nothing similar with such a regular geometry had ever been seen on any planet in the solar system. The Planetary Sciences Group has now been able to study and measure the phenomenon and, among other achievements, establish its rotation period. What is more, this period could be the same as that of the planet itself. Saturn is the only planet in the solar system whose rotation time remains unknown. The research illustrates the front cover of the journal Geophysical Research Letters and has been highlighted by the publication’s editor.

In 1980 and 1981 NASA’s Voyager 1 and 2 space probes passed for the first time over the planet Saturn, located 1,500 million km from the Sun. Among their numerous discoveries they observed a strange, hexagon-shaped structure in the planet’s uppermost clouds surrounding its north pole. The hexagon remained virtually static, without moving, vis-à-vis the planet’s overall rotation that was not accurately known. What is more, the images captured by the Voyager probes found that the clouds were moving rapidly inside the hexagon in an enclosed jet stream and were being dragged by winds travelling at over 400 km/h.

Thirty years later — the equivalent of one Saturn year, in other words, the time the planet takes to go all the way around the Sun — and over more than six consecutive years, researchers in the UPV/EHU’s Planetary Sciences Group, in collaboration with astronomers from various countries, were able to observe Saturn’s northern polar region in detail once again and confirmed that the hexagon continued in place. After measuring the positions of the hexagon vertices with great precision, they determined that its movement remains extremely stable, and on the basis of the cloud movements, that the jet stream inside it remains unchanged. For this study the researchers used images taken from the Earth between 2008 and 2014; they used, among others, the astronomical cameras PlanetCam (developed by the Planetary Sciences Group itself) and Astralux, fitted to the telescopes of the Calar Alto Observatory in Almería (Spain); in addition, they used the very high resolution images obtained by the Cassini spacecraft, which has been orbiting Saturn since 2004.

Due to the tilt of approximately 27° of the planet Saturn, its polar atmosphere undergoes intense seasonable variations with long polar nights lasting over seven years, followed by a long period of 23 years of variable illumination. However, the seasonal variations do not affect the hexagon and its jet stream at all, so both are part of an extensive wave, deeply rooted in Saturn’s atmosphere. The UPV/EHU researchers suggest that the hexagon and its stream are the manifestation of a “Rossby wave” similar to those that form in the mid-latitudes of the Earth. On our planet the jet stream meanders from west to east and brings, associated with it, the system of areas of low pressure and anticyclones which we have been seeing regularly on weather maps.

On Saturn, a hydrogen gas planet, ten times the size of the Earth, cold in its upper clouds, without a solid surface, and with an atmosphere as deep as that of an ocean, “the hexagonal wavy motion of the jet stream is expected to be propagated vertically and reveal to us aspects of the planet’s hidden atmosphere,” pointed out Agustín Sánchez-Lavega, Head of the Planetary Sciences research group. “The movement of the hexagon could therefore be linked to the depths of Saturn, and the rotation period of this structure, which, as we have been able to ascertain, is 10 hours, 39 minutes and 23 seconds, could be that of the planet itself,” he added. Saturn is the only planet in the solar system whose rotation period is not yet known.
ZoomInfo

abcstarstuff:

SATURN’S HEXAGON: AN AMAZING PHENOMENON

** Synopsis: Researchers at the Planetary Sciences Group of the UPV/EHU-University of the Basque Country reveal some of the secrets of Saturn’s mysterious hexagonal wave, including its rotation period, which could be that of the planet itself. The study illustrates the front cover of the journal Geophysical Research Letters. **

An unusual structure with a hexagonal shape surrounding Saturn’s north pole was spotted on the planet for the first time thirty years ago. Nothing similar with such a regular geometry had ever been seen on any planet in the solar system. The Planetary Sciences Group has now been able to study and measure the phenomenon and, among other achievements, establish its rotation period. What is more, this period could be the same as that of the planet itself. Saturn is the only planet in the solar system whose rotation time remains unknown. The research illustrates the front cover of the journal Geophysical Research Letters and has been highlighted by the publication’s editor.

In 1980 and 1981 NASA’s Voyager 1 and 2 space probes passed for the first time over the planet Saturn, located 1,500 million km from the Sun. Among their numerous discoveries they observed a strange, hexagon-shaped structure in the planet’s uppermost clouds surrounding its north pole. The hexagon remained virtually static, without moving, vis-à-vis the planet’s overall rotation that was not accurately known. What is more, the images captured by the Voyager probes found that the clouds were moving rapidly inside the hexagon in an enclosed jet stream and were being dragged by winds travelling at over 400 km/h.

Thirty years later — the equivalent of one Saturn year, in other words, the time the planet takes to go all the way around the Sun — and over more than six consecutive years, researchers in the UPV/EHU’s Planetary Sciences Group, in collaboration with astronomers from various countries, were able to observe Saturn’s northern polar region in detail once again and confirmed that the hexagon continued in place. After measuring the positions of the hexagon vertices with great precision, they determined that its movement remains extremely stable, and on the basis of the cloud movements, that the jet stream inside it remains unchanged. For this study the researchers used images taken from the Earth between 2008 and 2014; they used, among others, the astronomical cameras PlanetCam (developed by the Planetary Sciences Group itself) and Astralux, fitted to the telescopes of the Calar Alto Observatory in Almería (Spain); in addition, they used the very high resolution images obtained by the Cassini spacecraft, which has been orbiting Saturn since 2004.

Due to the tilt of approximately 27° of the planet Saturn, its polar atmosphere undergoes intense seasonable variations with long polar nights lasting over seven years, followed by a long period of 23 years of variable illumination. However, the seasonal variations do not affect the hexagon and its jet stream at all, so both are part of an extensive wave, deeply rooted in Saturn’s atmosphere. The UPV/EHU researchers suggest that the hexagon and its stream are the manifestation of a “Rossby wave” similar to those that form in the mid-latitudes of the Earth. On our planet the jet stream meanders from west to east and brings, associated with it, the system of areas of low pressure and anticyclones which we have been seeing regularly on weather maps.

On Saturn, a hydrogen gas planet, ten times the size of the Earth, cold in its upper clouds, without a solid surface, and with an atmosphere as deep as that of an ocean, “the hexagonal wavy motion of the jet stream is expected to be propagated vertically and reveal to us aspects of the planet’s hidden atmosphere,” pointed out Agustín Sánchez-Lavega, Head of the Planetary Sciences research group. “The movement of the hexagon could therefore be linked to the depths of Saturn, and the rotation period of this structure, which, as we have been able to ascertain, is 10 hours, 39 minutes and 23 seconds, could be that of the planet itself,” he added. Saturn is the only planet in the solar system whose rotation period is not yet known.

yahoonewsphotos:

Human body parts grown in a lab
In a north London hospital, scientists are growing noses, ears and blood vessels in the laboratory in a bold attempt to make body parts using stem cells.  It is among several labs around the world, including in the U.S., that are working on the futuristic idea of growing custom-made organs in the lab.  While only a handful of patients have received the British lab-made organs so far— including tear ducts, blood vessels and windpipes — researchers hope they will soon be able to transplant more types of body parts into patients, including what would be the world’s first nose made partly from stem cells. (AP)Find more news related pictures in our photo galleries and follow us on Tumblr
ZoomInfo
yahoonewsphotos:

Human body parts grown in a lab
In a north London hospital, scientists are growing noses, ears and blood vessels in the laboratory in a bold attempt to make body parts using stem cells.  It is among several labs around the world, including in the U.S., that are working on the futuristic idea of growing custom-made organs in the lab.  While only a handful of patients have received the British lab-made organs so far— including tear ducts, blood vessels and windpipes — researchers hope they will soon be able to transplant more types of body parts into patients, including what would be the world’s first nose made partly from stem cells. (AP)Find more news related pictures in our photo galleries and follow us on Tumblr
ZoomInfo
yahoonewsphotos:

Human body parts grown in a lab
In a north London hospital, scientists are growing noses, ears and blood vessels in the laboratory in a bold attempt to make body parts using stem cells.  It is among several labs around the world, including in the U.S., that are working on the futuristic idea of growing custom-made organs in the lab.  While only a handful of patients have received the British lab-made organs so far— including tear ducts, blood vessels and windpipes — researchers hope they will soon be able to transplant more types of body parts into patients, including what would be the world’s first nose made partly from stem cells. (AP)Find more news related pictures in our photo galleries and follow us on Tumblr
ZoomInfo
yahoonewsphotos:

Human body parts grown in a lab
In a north London hospital, scientists are growing noses, ears and blood vessels in the laboratory in a bold attempt to make body parts using stem cells.  It is among several labs around the world, including in the U.S., that are working on the futuristic idea of growing custom-made organs in the lab.  While only a handful of patients have received the British lab-made organs so far— including tear ducts, blood vessels and windpipes — researchers hope they will soon be able to transplant more types of body parts into patients, including what would be the world’s first nose made partly from stem cells. (AP)Find more news related pictures in our photo galleries and follow us on Tumblr
ZoomInfo
yahoonewsphotos:

Human body parts grown in a lab
In a north London hospital, scientists are growing noses, ears and blood vessels in the laboratory in a bold attempt to make body parts using stem cells.  It is among several labs around the world, including in the U.S., that are working on the futuristic idea of growing custom-made organs in the lab.  While only a handful of patients have received the British lab-made organs so far— including tear ducts, blood vessels and windpipes — researchers hope they will soon be able to transplant more types of body parts into patients, including what would be the world’s first nose made partly from stem cells. (AP)Find more news related pictures in our photo galleries and follow us on Tumblr
ZoomInfo

yahoonewsphotos:

Human body parts grown in a lab

In a north London hospital, scientists are growing noses, ears and blood vessels in the laboratory in a bold attempt to make body parts using stem cells.

It is among several labs around the world, including in the U.S., that are working on the futuristic idea of growing custom-made organs in the lab.

While only a handful of patients have received the British lab-made organs so far— including tear ducts, blood vessels and windpipes — researchers hope they will soon be able to transplant more types of body parts into patients, including what would be the world’s first nose made partly from stem cells. (AP)

Find more news related pictures in our photo galleries and follow us on Tumblr

theoriginofthespecies:

In its 4.6 billion years circling the sun, the Earth has harbored an increasing diversity of life forms:

for the last 3.6 billion years, simple cells (prokaryotes);
for the last 3.4 billion years, cyanobacteria performing photosynthesis;
for the last 2 billion years, complex cells (eukaryotes);
for the last 1 billion years, multicellular life;
for the last 600 million years, simple animals;
for the last 550 million years, bilaterians, animals with a front and a back;
for the last 500 million years, fish and proto-amphibians;
for the last 475 million years, land plants;
for the last 400 million years, insects and seeds;
for the last 360 million years, amphibians;
for the last 300 million years, reptiles;
for the last 200 million years, mammals;
for the last 150 million years, birds;
for the last 130 million years, flowers;
for the last 60 million years, the primates,
for the last 20 million years, the family Hominidae (great apes);
for the last 2.5 million years, the genus Homo (human predecessors);
for the last 200,000 years, anatomically modern humans.

Periodic extinctions have temporarily reduced diversity, eliminating:
2.4 billion years ago, many obligate anaerobes, in the oxygen catastrophe;
252 million years ago, the trilobites, in the Permian–Triassic extinction event;
66 million years ago, the pterosaurs and nonavian dinosaurs, in the Cretaceous–Paleogene extinction event.

Dates are approximate.

Credit: PBS.org

astrodidact:

via I fucking love science/fb

Visible light makes up about 2% of the entire electromagnetic spectrum. That leaves a tremendous amount of the Universe unavailable for us to explore visually, so scientists had to invent ways for us to see that which is out of our natural range. 

This picture illustrates just a few of the instruments used by NASA to explore our planet and out into space: HESS, Fermi and Swift for gamma-ray, NuSTAR and Chandra for X-ray, GALEX for ultraviolet, Kepler, Hubble, Keck (I and II), SALT, and Gemini (South) for visible, Spitzer, Herschel, and Sofia for infrared, Planck and CARMA for microwave, Spektr-R, Greenbank, and VLA for radio.

More info: http://on.fb.me/1emvcUF 

Image credit: NASA